资讯 人工智能
此为临时链接,仅用于文章预览,将在时失效

中国工程院院士李德毅:智能车产业化实践与展望

作者:李尊
2016/11/04 17:04

雷锋网按:原文发布于机器人圈公众号,在未改变原意的基础上略有删减。李德毅,中国工程院院士、欧亚科学院院士,指挥自动化和人工智能专家。1983年获英国爱丁堡海里奥特·瓦特大学博士学位。总参第61研究所研究员、中国指挥和控制学会名誉理事长、中国人工智能学会理事长。

中国工程院院士李德毅:智能车产业化实践与展望

李德毅,人工智能领域响当当的泰斗。作为自动化和人工智能专家,李院士对智能车产业的生态环境、工程化实践与未来发展有自己别具一格的看法,他反复提及智能车和轮式机器人的自主知识产权与国产化。就像李院士自己说的:

虽然个人力量有限,但希望以一己之力,为整个产业做出积极推动及改变。

中国工程院院士李德毅:智能车产业化实践与展望

未来已经来临,只是还未流行

毫无疑问,在不久的将来,我们的生活将因智能化而发生翻天覆地的变化。智能制造和人工智能将会在更广泛的领域为人类服务,这一凝结了人类智慧的高科技产业在一定程度上方便了我们的日常生活,机器人可以代替人类完成许多工作。未来,像好莱坞电影里那样的高科技产品会出现在我们身边,并逐渐趋向于常规化,而智能车就是其中的典型代表。

目前,我国正加速推进智能车领域的研究,从最早的天津军事交通学院的猛狮3号路测、北京联合大学的自主驾驶项目、与北汽的研究合作,到去年智能车挑战赛上与清华的合作……我国也积累了丰富的实践经验,其中由军事交通学院研制的“猛狮3号”已在京津高速公路上往返20次,这就是我国自主研发无人驾驶的典型案例之一。

中国工程院院士李德毅:智能车产业化实践与展望

万物互联,移动为先;移动生活离不开驾驶;把驾驶交给机器人。

智能车已不再停留在靠爱好者推动的初级阶段,研究所和高校改装后的汽车已成为过去。现在,智能车正在进入规模化生产阶段。未来,将是用技术换取市场的时代。

“生态十条”

纵观全球百年汽车工业的发展史,其核心竞争力已经由19世纪的机械、轮胎和20世纪发动机、汽车电子的竞争,转移到如今的轮式机器人、自主驾驶及自动驾驶方面的竞争。

中国工程院院士李德毅:智能车产业化实践与展望

尽管智能汽车在高速公路等结构化道路上顺利实现了无人驾驶,但许多汽车行业人士仍“冷看”智能车研发,并且一些IT专家提出的颠覆汽车行业路线——开发不设方向盘的无人驾驶汽车,其实并不可取。

中国工程院院士李德毅:智能车产业化实践与展望

人和智能汽车的关系,好比骑士和马。马的大脑有两个认知系统,它知道路该怎么走,也知道要听主人的话。智能汽车就应该像马一样,在道路上能自动行驶,也接受人的操控,在人工驾驶时也具有自动避险功能,这便是双驾双控系统的原理所在。

中国工程院院士李德毅:智能车产业化实践与展望

当前,全球智能驾驶的实践近乎火爆。尽管形态多样、方法各异,但也趋向于形成共识,从认知试验走向认知工程,正迅速为智能车的产业化和市场切入开辟道路,建立全新的智能车产业生态环境。对此,结合目前智能车产业生态,我们提出了“生态十条”。

中国工程院院士李德毅:智能车产业化实践与展望

其实,在智能车产业的全产业链上,无论哪一家企业,违背了智能车产业的生态都将难以崛起,也不可能茁壮成长。专职司机未来将逐渐失业,智能车产业化必将兴起,智能车产业化要从工程化做起。

驾驶脑占领无人驾驶“高地”

没有智能车的工程化,就不可能有智能车的产业化。我们已经从认知科学的研究转向认知工程的实践。

试想一下,用户会购买昂贵的、拳打脚踢的、改装后的试验用车吗?当然不会。仅由研究院所和高校利用改装后的汽车,在封闭道路环境下的无人驾驶试验和比赛,已经成为过去时,转而进入智能车工程化和市场化的新阶段。现在,ISO26262国际标准对智能汽车生产有了规定,使得车厂在生产安全的智能车上有了遵循标准。车厂的智能汽车纷纷上路行驶,智能车研发正在进入规模化生产阶段。

实际上,我们已经在智能车工程化实践上做了很多工作。我们的团队已经研发出“驾驶脑”。其实,这才是无人驾驶核心的真正意义。 

中国工程院院士李德毅:智能车产业化实践与展望

中国工程院院士李德毅:智能车产业化实践与展望

在驾驶过程中,驾驶员在回路中的预测控制是汽车自身无法替代的。

10年前,人们把传感器、交换机、计算机和服务器移到车里来采集和分析运动数据。

5年前,又把传感器藏于车身,把工控机等置于后备箱。

现在,传感器和车身一体,“驾驶脑”融入车内总线。“驾驶脑”不同于雷达等传感器的感知,它要去完成包括记忆认知、计算认知和交互认知在内的驾驶认知,成为智能车产业化链条中的重要零部件,是任何车载计算机无法替代的。

“驾驶脑”的功能决定了它不只是简单的自动驾驶,而是和驾驶员“取经”。“驾驶脑”在驾驶员开车时应该能“悄悄地”自动学习,把驾驶大数据转化为价值,把驾驶员脑转化为机器驾驶脑,并和机器行为融合在一起,让驾驶员教机器人开车,让大数据开车。

中国工程院院士李德毅:智能车产业化实践与展望

当今,深度学习正站在全球人工智能的风口。

人们普遍把卷积神经网络用于点云图像识别、完成感知阶段的自学习。而我们却另辟蹊径,把卷积神经网络用于形式化之后的、基于可用路权的驾驶态势图和反映驾驶操作全部内容的认知箭头形成的图对上,用于认知阶段的深度学习,把“驾驶脑”比喻为对应的“驾照”、“驾龄”和“路熟”,大大减少、简化了实时处理的数据量。

“驾驶脑”成功的背后是云计算大数据的力量,而正是这股力量助推着智能车产业化向前发展。智能车零部件从车载传感器到“驾驶脑”,从零部件性能、可靠性到整车的智能鲁棒性评测,正在形成规模化生产智能车的全新产业链条,形成智能车市场切入的突破口;跨界创新、尤其是人工智能、自动化工程和汽车业的跨界创新展现出勃勃生机。

在此大背景下,外企汽车进军中国智能车市场的势头汹涌,我国汽车产业会面临二次“市场换技术”的噩梦吗?为应对外企汽车可能对我国智能车市场的影响,国家提出了相关的战略需求,明确了我国智能车产业化推进的方向。

揭秘认知工程方法学

中国工程院院士李德毅:智能车产业化实践与展望 

智能驾驶试验、示范与评估迫在眉睫。智能车各种感知和认知手段,相互依存,甚至彼此缠绕。在各类比赛场、测试场,智能车的表现千奇百怪、反反复复,人们都困惑过、迷茫过,试来试去理不出头绪,试验和评估活动混乱无序。正是在这多姿多彩的实践活动中,正在逐渐形成明确的试验约束,呼唤智能车零部件生产与组装、智能驾驶规范化试验、智能评估的认知工程方法学。

我们在十多年的智能车研发中,摸索出一条智能驾驶试验与评估的递进阶梯,可解耦合,排先后,拾级而上。

中国工程院院士李德毅:智能车产业化实践与展望 

该方法学有几大好处:

第一,由上而下的认识问题,由下而上的解决问题;

第二,先后有序,递进式调模块,不牵一发动全身;

第三,孤立问题,减少耦合,增量式调智商,不相互缠绕;

第四,混合编组,交叉验证、常态试验。

智能车产业化展望

“智能车抑或是‘中国制造2025’的第一张名片,也是我国智慧城市、智能交通的第一张名片!智能车产业给社会带来的变化是全方位的,影响不可低估。”

目前,国内外智能驾驶示范项目将越来越多,各种各样的智能商用车的社会化运营比智能轿车的私人购买要早,商用车产业化发展更为迅速,其商业运营模式甚至会改变城市和社会的组织形态。例如,快速公交、商务大巴、公路列车物流、中重型货车、特种车辆、社区通勤、景区观光等。

除此之外,智能车在更专业化、私人化的领域也存在潜在市场,如自动驾驶赛车产业化、智能房车产业化。

从长远来看,轮式机器人的兴起将挤压乘用车市场空间。轮式机器人成为人类生产、生活中的常态。轮式机器人可于工厂用、农田用、港口用、测量用、战场用;社区用、办公用、家里用、医院用;方便、简洁、自主、自适应、自学习;助老、助残、助儿童、助自理;时刻在线;它将和手机一样,成为人人联网、物物联网中的基础型端设备,正挤压小轿车的市场空间。

智能车产业化中的7个重要里程碑

长按图片保存图片,分享给好友或朋友圈

中国工程院院士李德毅:智能车产业化实践与展望

扫码查看文章

正在生成分享图...

取消
相关文章