资讯 人工智能
此为临时链接,仅用于文章预览,将在时失效

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

作者:李尊
2016/08/26 11:22

本文联合编译:Blake、高斐

雷锋网注:Yoshua Bengio教授是机器学习大神之一,尤其是在深度学习这个领域,他也是人工智能领域中经典之作《Learning Deep Architectures for AI》的作者。Yoshua Bengio连同Geoff Hinton老先生以及 Yann LeCun教授一起造就了2006年始的深度学习复兴。他的研究工作主要聚焦在高级机器学习方面,致力于用其解决人工智能问题。目前他是仅存的几个仍然全身心投入在学术界的深度学习教授之一(蒙特利尔大学),本文是他在2009年的经典前瞻演讲——“人工智能学习深度架构”有关内容的第二部分。

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

题图来自 cpacanada.ca

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

深信度网络(DBN)

1.  从RMB顶层取样

2.  当存在k+1层时,从k层取样

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

由RBM(受限玻尔兹曼机)向DBN(深信度网络)的转换

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

深信度网络(DBN)

1.  从相互联系的RBM中近似取得P(h|h)

2.  由于RBM与DBN中的P(h)不同,因而取近似值

1.  可变的界限证实了RBMs贪婪逐层训练

2.  如何同时训练所有的层?

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

深层玻尔兹曼机 ((Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

估测对数似然值

1.  重构误差值,以提供一个廉价的代理服务器。

2.  当对数Z小于25二分输入值是,对数Z是可分析追踪的,或隐藏的。

3.  退火重要性采样(AIS)的最低界限值

AIS的扩展(Salakhutdinov & Murray, ICML 2008, NIPS 2008)

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

深层卷积结构

该结构引自Le Cun的团队(NYU)和Ng(斯坦福大学):最佳MNIST数据,Caltech-101物体,人脸图像

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

卷积深信度网络(Convolutional DBNs)

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

再次回到贪婪逐层预训练

栈式受限玻尔兹曼机(RBM)——深信度网络(DBN) ——监督式深层神经网络

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

为什么由DBNs(深信度网络)获得的分类器能够如此有效地运行?

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

栈式自动编码器

贪婪逐层无监督式预训练也适用于自动编码器

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

自动编码器与对比散度(CD)

RBM对数似然梯度可以被写作收敛性扩展:CD-K等于2 K terms,重建误差值近似等于1term

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

贪婪逐层监督式训练

与无监督式预训练相比,贪婪逐层监督式训练的效果更糟糕,但是训练效果优于一个深层神经网络的普通训练效果。

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

监督式微调是重要的

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

稀疏式自动编码器(Ranzato et al, 2007; Ranzato et al 2008)

1.MNIST     误差为.5%       突破记录

2.Caltech-101  正确率高达65%    最佳成绩  (Jarrett et al, ICCV 2009)

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

降噪自动编码器 (Vincent et al, 2008)

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

栈式降噪自动编码器

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

降噪自动编码器:标准

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

降噪自动编码器:结果

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

无监督式预训练效果为何如此好?

无监督式成分使得模型接近P(x)

P(x)的表征也适用于P(y|x)

接近P(y|x)局部更优最小值的无监督式初始值

能够达到局部最小值下限,否则随机初始值无法达到局部最小值

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

在函数空间内学习轨线

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

无监督式学习正则化矩阵

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

更好地优化在线误差

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

预训练较低层起到更为重要的作用

证实了:重要的不仅仅是初始权重值的边际分布。

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

信用分配问题

1.  局部无监督式信号等于提取/剥离因子

2.  暂时稳定性

3.  多模态之间共享信息

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

层-局部学习是重要的

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

半监督式嵌入

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

缓慢变化的特征

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

学习深层网络的动态变化特征

微调之前——微调之后

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

学习深层网络的动态变化特征

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

实例的排序与选择

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

延拓法

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

作为一种延拓法的课程学习方法

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

重要信息(take-home messages)

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

 一些开放性问题:

总结:本文中主要提到了有关深信念网络、DBN、无监督学习、降噪等相关内容,以及为什么将它们应用到人工智能领域中。作为 Yoshua Bengio在2009年的演讲,它是相当具有前瞻性的,希望在深度学习能给你以启发。

PS : 本文由雷锋网编译,未经许可拒绝转载!

via Yoshua Bengio

长按图片保存图片,分享给好友或朋友圈

深度学习大神Yoshua Bengio经典前瞻演讲,帮你打通深度学习的任督二脉(下)

扫码查看文章

正在生成分享图...

取消
相关文章