用综合方法预测2019-nCoV传播的结束
通过被动WiFi传感和数据挖掘了解社会事件中的人群行为
用于RGB-红外行人重识别的交叉模态配对图像生成
CTM:面向动作识别的协同时态建模
Music2Dance:使用WaveNet的音乐驱动的舞蹈生成
论文名称:Predictions of 2019-nCoV Transmission Ending via Comprehensive Methods
作者:Zeng Tianyu /Zhang Yunong /Li Zhenyu /Liu Xiao /Qiu Binbin
发表时间:2020/2/12
论文链接:https://paper.yanxishe.com/review/11431?from=leiphonecolumn_paperreview0219
推荐原因
这篇论文试图预测新型冠状病毒的传播,提出了一种多模态常微分方程神经网络(Multi-Model Ordinary Differential Equation set Neural Network,MMODEs-NN)以及无模型方法,来预测疫情在中国大陆尤其是湖北省的扩散情况。与现有流行病学模型相比,这篇论文提出的方法可以使用常微分方程激活法来模拟传播,而基于S形函数、高斯函数和Poisson分布的无模型方法是线性的,因而非常高效。根据数值实验与实情,为了控制疫情扩散的特别政策在一些省取得效果,目前预测这股疫情可能在2月18日之前减速并在2020年4月之前结束。这篇论文所提的数学和人工智能方法可以对2019-nCoV的结束给出一致且合理的预测。
论文名称:Understanding Crowd Behaviors in a Social Event by Passive WiFi Sensing and Data Mining
作者:Zhou Yuren /Lau Billy Pik Lik /Koh Zann /Yuen Chau /Ng Benny Kai Kiat
发表时间:2020/2/5
论文链接:https://paper.yanxishe.com/review/11308?from=leiphonecolumn_paperreview0219
推荐原因
这篇论文通过WiFi传感数据进行人群行为分析。
通过收集从移动设备发送的WiFi请求,无源WiFi感测提供了一种比人群计数器和摄像机更好的监控人群的方法。在现有研究中,对收集数据的全面分析和挖掘没有给予足够重视。这篇论文提出一个全面的数据分析框架,以在统计、可视化和无监督机器学习帮助下,全面分析收集的探测请求,以提取与大型社交事件中的人群行为相关的三种类型模式。这个分析框架首先从探测请求中提取移动设备的轨迹并进行分析,以揭示人群运动的空间模式。然后采用分层聚集聚类法来查找不同位置之间的互连。接下来应用K均值和K聚类算法分别按天数和位置提取人群的时间访问模式。最后通过与时间结合,轨迹被转换为时空模式,揭示了轨迹持续时间如何随长度变化,以及人群运动的总体趋势如何随时间变化。这个数据分析框架通过在大型社交事件中收集的真实数据进行了验证。
论文名称:Cross-Modality Paired-Images Generation for RGB-Infrared Person Re-Identification
作者:Wang Guan-An /Yang Tianzhu Zhang. Yang /Cheng Jian /Chang Jianlong /Liang Xu /Hou Zengguang
发表时间:2020/2/10
论文链接:https://paper.yanxishe.com/review/11306?from=leiphonecolumn_paperreview0219
推荐原因
这篇论文要解决的是行人重识别问题。
RGB和IR图像之间缺少对应标签,会导致某些实例的对齐错误,从而限制RGB-IR Re-ID的性能。与现有方法不同,这篇论文提出生成跨模态配对图像,并执行全局集合级和细粒度实例级对齐。这种方法可以通过解开特定于模态和模态不变的特征来执行集合级对齐。与传统方法相比,所提方法可以显式删除特定于模态的特征,并且可以更好地减少模态变化。给定一个人的跨模态不成对图像,所提方法可以从交换的图像生成跨模态成对图像,通过最小化每对图像的距离直接执行实例级对齐。在两个标准基准上的大量实验结果表明,所提模型有利于抗衡当前最佳方法,特别是在SYSU-MM01数据集上,所提模型在Rank-1和mAP方面可以实现9.2%和7.7%的提升。
论文名称:CTM: Collaborative Temporal Modeling for Action Recognition
作者:Liu Qian /Wang Tao /Liu Jie /Guan Yang /Bu Qi /Yang Longfei
发表时间:2020/2/8
论文链接:https://paper.yanxishe.com/review/11182?from=leiphonecolumn_paperreview0219
推荐原因
这篇论文要解决的是动作识别问题。
与图像识别任务不同,动作识别任务对于时间维度的要求更高。为了学习到视频的强大特征,这篇论文提出了一个名为CTM的协同时间模型来学习时间信息。CTM作为一个单独的时间建模模块,包括了两条协作路径:一个空间感知的时间建模路径和一个无空间感知的时间建模路径。CTM模型可以无缝地插入许多流行的神经网络模型中以生成CTM网络,可以将学习时间信息的能力带给仅捕获了空间信息的2D CNN骨干网络中。在几个流行的动作识别数据集上进行的实验表明,CTM块在2D CNN基线模型上带来了性能提升。
论文名称:Music2Dance: Music-driven Dance Generation using WaveNet
作者:Zhuang Wenlin /Wang Congyi /Xia Siyu /Chai Jinxiang /Wang Yangang
发表时间:2020/2/2
论文链接:https://paper.yanxishe.com/review/11181?from=leiphonecolumn_paperreview0219
推荐原因
这篇论文提出了一个名为Music2Dance的模型,用于解决全自动音乐编排的问题。
Music2Dance的主要思想是将最初为语音生成而设计的WaveNet转变为人体运动合成,首先通过考虑节奏和旋律的特征来提取音乐特征,接着将舞蹈的类型设计为网络的全局条件。为了解决数据缺乏的挑战,这篇论文收集捕捉了专业舞者同步的音乐舞蹈对,从而建立了高质量的音乐舞蹈对数据集。这个数据集上的实验表明了Music2Dance的有效性。
为了更好地服务广大 AI 青年,AI 研习社正式推出全新「论文」版块,希望以论文作为聚合 AI 学生青年的「兴趣点」,通过论文整理推荐、点评解读、代码复现。致力成为国内外前沿研究成果学习讨论和发表的聚集地,也让优秀科研得到更为广泛的传播和认可。
我们希望热爱学术的你,可以加入我们的论文作者团队。
加入论文作者团队你可以获得
1.署着你名字的文章,将你打造成最耀眼的学术明星
2.丰厚的稿酬
3.AI 名企内推、大会门票福利、独家周边纪念品等等等。
加入论文作者团队你需要:
1.将你喜欢的论文推荐给广大的研习社社友
2.撰写论文解读
如果你已经准备好加入 AI 研习社的论文兼职作者团队,可以添加运营小姐姐的微信,备注“论文兼职作者”
雷锋网雷锋网雷锋网
相关文章:
今日 Paper | 社交媒体谣言检测;连续手语识别;细粒度服装相似性学习;混合图神经网络等
今日 Paper | 旋转不变混合图形模型网络;人体移动轨迹;行人再识别;基准成像系统等
今日 Paper | 从纯图像重建世界;层次递归网络序列;注意力神经网络;命名实体识别等
今日 Paper | 梯度剪切;命名实体识别;自然语言处理;免强度函数学习等
今日 Paper | 小样本学习;机器学习;单幅图像去雾 ;零样本目标检测等
今日 Paper | 可视问答模型;神经风格差异转移;图像压缩系统 ;K-SVD图像去噪等
今日 Paper | 依赖性解析器;DNNs对图像损坏;高效人脸特征学习 ;虚拟试穿统一框架等
今日 Paper | 模态平衡模型;组合语义分析;高表达性SQL查询;多人姿态估计模型等
今日 Paper | 多人姿势估计;对话框语义分析;无监督语义分析;自然语言处理工具包等
今日 Paper | 多人线性模型;身体捕捉;会话问答;自然语言解析;神经语义
今日 Paper | 手部和物体重建;三维人体姿态估计;图像到图像变换等
今日 Paper | 动态手势识别;领域独立无监督学习;基于BERT的在线金融文本情感分析等
今日 Paper | 新闻推荐系统;多路编码;知识增强型预训练模型等
今日 Paper | 小样本学习;视觉情感分类;神经架构搜索;自然图像抠像等
今日 Paper | 蚊子叫声数据集;提高语音识别准确率;对偶注意力推荐系统等
今日 Paper | 人脸数据隐私;神经符号推理;深度学习聊天机器人等
今日 Paper | 虚拟试穿网络;人群计数基准;联邦元学习;目标检测等
今日 Paper | 人体图像生成和衣服虚拟试穿;鲁棒深度学习;图像风格迁移等