资讯 业界

麦肯锡:全球调研14个行业、160个案例、3000名高管,AI应用到哪一步了?丨雷报013期

作者:李秀琴
2017/10/11 13:24

雷锋网按:自1990年以来,麦肯锡全球研究院(雷锋网(公众号:雷锋网)注:以下简称MGI)一直在寻求对全球经济发展予以更深层次的理解。而在新一波人工智能浪潮的席卷之下,全球各行各业也有了新的发展形态。就此,MGI跨越14个行业、10个国家,对3073名企业高管进行了调查,并分析了160个案例,集合发布了《人工智能:下一个数字前沿?》(以下简称《报告》)这份报告。

在这份《报告》中,MGI将重点分为两部分。第一部分,在分析了人工智能和商业化之间的关系之后,MGI又对人工智能对经济发展和行业转型产生的作用进行了深度解读。而在后半部分,MGI则以零售、电力、制造、医疗和教育五大领域为例,以进一步研究人工智能在全球经济形态里的应用情况。在这篇文章中,雷锋网将先对MGI《报告》的第一部分进行重点编译和分析。

麦肯锡:全球调研14个行业、160个案例、3000名高管,AI应用到哪一步了?丨雷报013期

麦肯锡:全球调研14个行业、160个案例、3000名高管,AI应用到哪一步了?丨雷报013期图1:MGI《人工智能:下一个数字前沿?》要点解析

话不多说,先上本文要点:

在科技巨头的带领下,AI投资在快速增长,商业化应用却落后了

麦肯锡:全球调研14个行业、160个案例、3000名高管,AI应用到哪一步了?丨雷报013期

图2:2016年科技巨头内部投资情况

众所周知,在科技巨头的带领下,如亚马逊、苹果、百度、谷歌等等,正在AI领域投资数十上百亿美元。不过,在这一过程中尤以大公司的内部投资占据主导地位。经MGI预估,在2016年,这一数据达到180-270亿美元。而大公司用于外部投资,如VC、PE、并购、赠款和种子基金等等,金额则约为80-120亿美元。2016年,企业外部投资年均增长率接近40%。相比之下,这一比率在2010年-2013年一直维持在30%左右。

事实上,就目前来说,企业对AI应用的需求还不太紧迫,部分原因在于数字和分析经济转型速度相对滞后。在MGI对全球3000多位高管的调查中,我们发现,很多企业高管对AI还不甚了解。比如不清楚AI究竟能为他们做些什么,在哪里可以获得AI应用,如何将AI应用到企业业务,以及如何评估投资AI技术的回报等。

而在大公司的内部AI投资中,绝大部分是用于研发和部署。虽然苹果、百度、谷歌等科技巨擘都在举力开发内部技术套件,但AI投资重点又各不相同。如,亚马逊将重点主要放在机器人和语音识别上,Salesforce则为虚拟助手和机器学习上;宝马、特斯拉等汽车厂商则专注在机器人、机器学习的研发上,以期进一步推进无人驾驶的发;IBM则承诺投入30亿美元,用于Watson认知服务的布局;百度则在过去的半年里向AI领域投入15亿美元,另外还为AI投资建立百度基金(Baidu Venture)。

与此同时,大公司也从未停止并购的步伐,此举可将技术、人才和客户全收入囊中。据最近一份报告显示,各公司正大力寻求AI人才,发布10000项与AI有关的岗位招聘需求,并为此列出了超过6.5亿美元的预算,AI人才需求达到空前旺盛的程度。

机器学习获得最多投资

企业并购成为支撑AI公司快速发展的外部资金来源。据MGI预测,从2013-2016年,企业的复合增长率已超80%。自2010年以来,全球企业已经实现了100多笔与AI相关的并购交易。

在这100多笔并购交易中,谷歌完成了24笔,位居首位。其中,涉及计算机视觉的AI公司有8项,而自然语言处理的则有7项;苹果则以9笔的成绩位列其二。其中计算机视觉、机器学习和语言处理技术则平分秋色。

麦肯锡:全球调研14个行业、160个案例、3000名高管,AI应用到哪一步了?丨雷报013期

图3:2016年AI企业收获的外部投资中,各项AI技术所获投资情况

由上表可知,2016年收获大公司外部投资的AI企业中,涉及机器学习的收获最多投资,达到50-70亿美元,而计算机视觉位居其次,获25-35亿美元投资,其次分别为自然语言处理、无人驾驶、机器人和虚拟助手。

不过,在很大程度上,投资者也在静待他们的投资回报。根据PitchBook发布的数据显示,只有10%的公司认为机器学习可作为核心业务产生收益。此外,大公司的外部投资还高度集中在特定区域,逐渐形成以美国和中国几个技术中心为主,欧洲远远落后的格局。

在AI应用早期阶段,各行业逐渐呈现应用模式差异化

虽然全球涌起AI投资热潮,但就目前来看,各行业在AI应用上仍然处于早期阶段,很少有公司将AI纳入规模化的价值业务链里。事实上,在3073名被调查者当中,只有20%的人表示他们在核心业务或企业管理中采用了一种或多种相关AI技术,而10%的人则表示采用了两种以上的AI技术,还有9%表示运用了机器学习技术。

另一方面,MGI回顾了160多个行业案例,发现只有12%的项目在实验阶段取得了进展。细究一些公司为何不愿采取行动的原因,则主要在于AI能否带来回报,对于一些小公司来说,这点尤为重要。

麦肯锡:全球调研14个行业、160个案例、3000名高管,AI应用到哪一步了?丨雷报013期

图4:不同AI应用深度的企业在各价值链中的应用情况

在AI应用的早期,我们发现行业和企业之间采用的模式也不尽相同,大致呈现以下6个特点:

AI的下一个挑战:让更多用户习惯并接受

据IT行业分析师表示,未来AI技术的市场规模将在三年内实现强劲增长。而MGI的调查结果也呼应了这点。据其调查的大部分公司均表示将在三年内增加AI领域的投入。而在经济学人智库( Economist Intelligence Unit)日前调查的203位高管中,有75%均表示公司将在三年内积极应用AI技术(有3%表示AI应用已在进行中)。

麦肯锡:全球调研14个行业、160个案例、3000名高管,AI应用到哪一步了?丨雷报013期

图5:不同AI接受度的行业的AI投资情况

根据上图可知,AI接受度更高的行业往往在AI投资上也更为积极。根据MGI对受访者的调查以及外部分析师的预测表明,金融服务、零售、医疗和先进制造业将成为AI应用的先锋领域。就现阶段而言,这些行业应用AI技术的可行性也更高,相较其他领域已有一些较为成熟的案例。

不过,技术实力仍然是产业之间最主要的区别因素。以金融服务、高科技和电信产业为例,他们已经产生并存储了大量的结构化数据,所以在应用AI技术上也更有优势。但就建筑和旅游业来说,则远远落后于其他行业。

值得注意的是,AI的进一步发展,在给各行各业带来生机的同时,也面临一些艰难的挑战——社会伦理和监管等难题涌现。如无人驾驶的行驶责任问题、数据访问牵扯的隐私保护问题、算法透明度带来的社会伦理争议、机器人征税等等,这些问题不仅增加了企业的成本,同时也阻碍了企业应用AI的进程。只有让更多的人接受并适应AI技术,未来AI才能更好的实现商业化,为人类带来更多的便利。

雷锋网注:文章来源于麦肯锡全球研究院发布的《人工智能:下一个数字前沿?》报告

文章点评
相关文章