资讯 人工智能开发者
此为临时链接,仅用于文章预览,将在时失效

TensorFlow全新的数据读取方式:Dataset API入门教程

作者:汪思颖
2017/11/09 10:55

雷锋网 AI科技评论按:本文作者何之源,该文首发于知乎专栏AI Insight,雷锋网 AI科技评论获其授权转载。

Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。

此前,在TensorFlow中读取数据一般有两种方法:

Dataset API同时支持从内存和硬盘的读取,相比之前的两种方法在语法上更加简洁易懂。此外,如果想要用到TensorFlow新出的Eager模式,就必须要使用Dataset API来读取数据。

本文就来为大家详细地介绍一下Dataset API的使用方法(包括在非Eager模式和Eager模式下两种情况)。

Dataset API的导入

在TensorFlow 1.3中,Dataset API是放在contrib包中的:

tf.contrib.data.Dataset

而在TensorFlow 1.4中,Dataset API已经从contrib包中移除,变成了核心API的一员:

tf.data.Dataset

下面的示例代码将以TensorFlow 1.4版本为例,如果使用TensorFlow 1.3的话,需要进行简单的修改(即加上contrib)。

基本概念:Dataset与Iterator

让我们从基础的类来了解Dataset API。参考Google官方给出的Dataset API中的类图:

TensorFlow全新的数据读取方式:Dataset API入门教程

在初学时,我们只需要关注两个最重要的基础类:Dataset和Iterator。

Dataset可以看作是相同类型“元素”的有序列表。在实际使用时,单个“元素”可以是向量,也可以是字符串、图片,甚至是tuple或者dict。

先以最简单的,Dataset的每一个元素是一个数字为例:

import tensorflow as tf

import numpy as np


dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

这样,我们就创建了一个dataset,这个dataset中含有5个元素,分别是1.0, 2.0, 3.0, 4.0, 5.0。

如何将这个dataset中的元素取出呢?方法是从Dataset中示例化一个Iterator,然后对Iterator进行迭代。

在非Eager模式下,读取上述dataset中元素的方法为:

iterator = dataset.make_one_shot_iterator()

one_element = iterator.get_next()

with tf.Session() as sess:
   for i in range(5):
       print(sess.run(one_element))

对应的输出结果应该就是从1.0到5.0。语句iterator = dataset.make_one_shot_iterator()从dataset中实例化了一个Iterator,这个Iterator是一个“one shot iterator”,即只能从头到尾读取一次。one_element = iterator.get_next()表示从iterator里取出一个元素。由于这是非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。

如果一个dataset中元素被读取完了,再尝试sess.run(one_element)的话,就会抛出tf.errors.OutOfRangeError异常,这个行为与使用队列方式读取数据的行为是一致的。在实际程序中,可以在外界捕捉这个异常以判断数据是否读取完,请参考下面的代码:

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))iterator = dataset.make_one_shot_iterator()one_element = iterator.get_next()with tf.Session() as sess:
   try:
       while True:
           print(sess.run(one_element))
   except tf.errors.OutOfRangeError:
       print("end!")

在Eager模式中,创建Iterator的方式有所不同。是通过tfe.Iterator(dataset)的形式直接创建Iterator并迭代。迭代时可以直接取出值,不需要使用sess.run():

import tensorflow.contrib.eager as tfe

tfe.enable_eager_execution()


dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))


for one_element in tfe.Iterator(dataset):
   print(one_element)

从内存中创建更复杂的Dataset

之前我们用tf.data.Dataset.from_tensor_slices创建了一个最简单的Dataset:

dataset=tf.data.Dataset.from_tensor_slices(np.array([1.0,2.0,3.0,4.0,5.0]))

其实,tf.data.Dataset.from_tensor_slices的功能不止如此,它的真正作用是切分传入Tensor的第一个维度,生成相应的dataset。

例如:

dataset=tf.data.Dataset.from_tensor_slices(np.random.uniform(size=(5,2)))

传入的数值是一个矩阵,它的形状为(5, 2),tf.data.Dataset.from_tensor_slices就会切分它形状上的第一个维度,最后生成的dataset中一个含有5个元素,每个元素的形状是(2, ),即每个元素是矩阵的一行。

在实际使用中,我们可能还希望Dataset中的每个元素具有更复杂的形式,如每个元素是一个Python中的元组,或是Python中的词典。例如,在图像识别问题中,一个元素可以是{"image": image_tensor, "label": label_tensor}的形式,这样处理起来更方便。

tf.data.Dataset.from_tensor_slices同样支持创建这种dataset,例如我们可以让每一个元素是一个词典:

dataset = tf.data.Dataset.from_tensor_slices(
   {
       "a": np.array([1.0, 2.0, 3.0, 4.0, 5.0]),                                      
       "b": np.random.uniform(size=(5, 2))
   })

这时函数会分别切分"a"中的数值以及"b"中的数值,最终dataset中的一个元素就是类似于{"a": 1.0, "b": [0.9, 0.1]}的形式。

利用tf.data.Dataset.from_tensor_slices创建每个元素是一个tuple的dataset也是可以的:

dataset = tf.data.Dataset.from_tensor_slices(
 (np.array([1.0, 2.0, 3.0, 4.0, 5.0]), np.random.uniform(size=(5, 2)))

)

对Dataset中的元素做变换:Transformation

Dataset支持一类特殊的操作:Transformation。一个Dataset通过Transformation变成一个新的Dataset。通常我们可以通过Transformation完成数据变换,打乱,组成batch,生成epoch等一系列操作。

常用的Transformation有:

下面就分别进行介绍。

(1)map

map接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset,如我们可以对dataset中每个元素的值加1:

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

dataset = dataset.map(lambda x: x + 1) # 2.0, 3.0, 4.0, 5.0, 6.0

(2)batch

batch就是将多个元素组合成batch,如下面的程序将dataset中的每个元素组成了大小为32的batch:

dataset=dataset.batch(32)

(3)shuffle

shuffle的功能为打乱dataset中的元素,它有一个参数buffersize,表示打乱时使用的buffer的大小:

dataset=dataset.shuffle(buffer_size=10000)

(4)repeat

repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch:

dataset=dataset.repeat(5)

如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常:

dataset=dataset.repeat()

例子:读入磁盘图片与对应label

讲到这里,我们可以来考虑一个简单,但同时也非常常用的例子:读入磁盘中的图片和图片相应的label,并将其打乱,组成batch_size=32的训练样本。在训练时重复10个epoch。

对应的程序为(从官方示例程序修改而来):

# 函数的功能时将filename对应的图片文件读进来,并缩放到统一的大小

def _parse_function(filename, label):
 image_string = tf.read_file(filename)
 image_decoded = tf.image.decode_image(image_string)
 image_resized = tf.image.resize_images(image_decoded, [28, 28])
 return image_resized, label


# 图片文件的列表

filenames = tf.constant(["/var/data/image1.jpg", "/var/data/image2.jpg", ...])

# label[i]就是图片filenames[i]的label

labels = tf.constant([0, 37, ...])


# 此时dataset中的一个元素是(filename, label)

dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))


# 此时dataset中的一个元素是(image_resized, label)

dataset = dataset.map(_parse_function)


# 此时dataset中的一个元素是(image_resized_batch, label_batch)

dataset = dataset.shuffle(buffersize=1000).batch(32).repeat(10)

在这个过程中,dataset经历三次转变:

Dataset的其它创建方法....

除了tf.data.Dataset.from_tensor_slices外,目前Dataset API还提供了另外三种创建Dataset的方式:

它们的详细使用方法可以参阅文档:Module: tf.data

更多类型的Iterator....

在非Eager模式下,最简单的创建Iterator的方法就是通过dataset.make_one_shot_iterator()来创建一个one shot iterator。除了这种one shot iterator外,还有三个更复杂的Iterator,即:

initializable iterator必须要在使用前通过sess.run()来初始化。使用initializable iterator,可以将placeholder代入Iterator中,这可以方便我们通过参数快速定义新的Iterator。一个简单的initializable iterator使用示例:

limit = tf.placeholder(dtype=tf.int32, shape=[])


dataset = tf.data.Dataset.from_tensor_slices(tf.range(start=0, limit=limit))


iterator = dataset.make_initializable_iterator()

next_element = iterator.get_next()


with tf.Session() as sess:
   sess.run(iterator.initializer, feed_dict={limit: 10})
   for i in range(10):
     value = sess.run(next_element)
     assert i == value

此时的limit相当于一个“参数”,它规定了Dataset中数的“上限”。

initializable iterator还有一个功能:读入较大的数组。

在使用tf.data.Dataset.from_tensor_slices(array)时,实际上发生的事情是将array作为一个tf.constants保存到了计算图中。当array很大时,会导致计算图变得很大,给传输、保存带来不便。这时,我们可以用一个placeholder取代这里的array,并使用initializable iterator,只在需要时将array传进去,这样就可以避免把大数组保存在图里,示例代码为(来自官方例程):

# 从硬盘中读入两个Numpy数组

with np.load("/var/data/training_data.npy") as data:
 features = data["features"]
 labels = data["labels"]


features_placeholder = tf.placeholder(features.dtype, features.shape)

labels_placeholder = tf.placeholder(labels.dtype, labels.shape)


dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))

iterator = dataset.make_initializable_iterator()

sess.run(iterator.initializer, feed_dict={features_placeholder: features,
                                         labels_placeholder: labels})

reinitializable iterator和feedable iterator相比initializable iterator更复杂,也更加少用,如果想要了解它们的功能,可以参阅官方介绍,这里就不再赘述了。

总结

本文主要介绍了Dataset API的基本架构:Dataset类和Iterator类,以及它们的基础使用方法。

在非Eager模式下,Dataset中读出的一个元素一般对应一个batch的Tensor,我们可以使用这个Tensor在计算图中构建模型。

在Eager模式下,Dataset建立Iterator的方式有所不同,此时通过读出的数据就是含有值的Tensor,方便调试。

作为兼容两种模式的Dataset API,在今后应该会成为TensorFlow读取数据的主流方式。关于Dataset API的进一步介绍,可以参阅下面的资料:

雷锋网 AI科技评论

长按图片保存图片,分享给好友或朋友圈

TensorFlow全新的数据读取方式:Dataset API入门教程

扫码查看文章

正在生成分享图...

取消
相关文章