下载地址:https://www.yanxishe.com/resourceDetail/2405?from=leiphonecolumn_res1008
【 图片来源:CSDN 所有者:冯爽朗 】
物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。从传统的人工设计特征加浅层分类器的框架,到基于深度学习的端到端的检测框架,物体检测一步步变得愈加成熟。
在传统视觉领域,物体检测是一个非常热门的研究方向。受70年代落后的技术条件和有限应用场景的影响,物体检测直到上个世纪90年代才开始逐渐走入正轨。物体检测对于人眼来说并不困难,通过对图片中不同颜色、纹理、边缘模块的感知很容易定位出目标物体,但计算机面对的是RGB像素矩阵,很难从图像中直接得到狗和猫这样的抽象概念并定位其位置,再加上物体姿态、光照和复杂背景混杂在一起,使得物体检测更加困难。
检测算法里面通常包含三个部分,第一个是检测窗口的选择, 第二个是特征的设计,第三个是分类器的设计。随着2001年Viola Jones提出基于Adaboost的人脸检测方法以来,物体检测算法经历了传统的人工设计特征加浅层分类器的框架,到基于大数据和深度神经网络的End-To-End的物体检测框架,物体检测一步步变得愈加成熟。
本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。如需删除,请联系 kefu@yanxishe.com
AI 研习社已经和阿里大文娱、旷视、搜狗搜索、小米等知名公司达成联系,帮助大家更好地求职找工作,一键投递简历至 HR 后台,准备了一些内推渠道群。
欢迎大家添加研习社小学妹微信(aiyanxishe),小学妹拉你加入(备注求职)。