资讯 人工智能开发者
此为临时链接,仅用于文章预览,将在时失效

为什么吴恩达认为未来属于迁移学习?

作者:三川
2017/04/18 11:54

雷锋网按:日前,知名 AI 博主、爱尔兰国立大学 NLP 博士生 Sebastian Ruder 以“迁移学习:机器学习的下一个前线”为题,对迁移学习的技术原理、重要性与意义、应用方法做了详细阐述。本文对其中讨论迁移学习的原理、重要性,以及吴恩达的预测的部分做了节选,阅读原文(英文)请戳这里。雷锋网编译。

为什么吴恩达认为未来属于迁移学习?

Sebastian Ruder 

Sebastian Ruder:在训练深度神经网络、学习输入到输出的精准映射上,近年来我们做得越来越好。不管是针对图像、语句,还是标签预测,有了大量做过标记的样例,都已不再是难题。

今天的深度学习算法仍然欠缺的,是在新情况(不同于训练集的情况)上的泛化能力。

在什么时候,这项能力是必须的呢?——当你把模型应用于现实情形,而非小心翼翼整理好的数据集的时候。现实世界是相当混乱的,包含无数的特殊情形,会有许多在训练阶段模型没有遇到过的情况。因而未必适于对新情况做预测。

把别处学得的知识,迁移到新场景的能力,就是迁移学习。

迁移学习的原理

在机器学习的传统监督学习情况下,如果我们准备为某个任务/领域 A 来训练模型,获取任务/领域 A 里标记过的数据,会是前提。图 1 把这表现的很清楚:model A 的训练、测试数据的任务/领域是一致的。

为什么吴恩达认为未来属于迁移学习?

图 1: 传统的 ML 监督学习

可以预期,我们在该数据集上训练的模型 A,在相同任务/领域的新数据上也能有良好表现。另一方面,对于给定任务/领域 B,我们需要这个领域的标记数据,来训练模型 B,然后才能在该任务/领域取得不错的效果。

但传统的监督学习方法也会失灵——在缺乏某任务/领域标记数据的情况下,它往往无法得出一个可靠的模型。举个例子,如果我们想要训练出一个模型,对夜间的行人图像进行监测,我们可以应用一个相近领域的训练模型——白天的行人监测。理论上这是可行的。但实际上,模型的表现效果经常会大幅恶化,甚至崩溃。这很容易理解,模型从白天训练数据获取了一些偏差,不知道怎么泛化到新场景。

如果我们想要执行全新的任务,比如监测自行车骑手,重复使用原先的模型是行不通的。这里有一个很关键的原因:不同任务的数据标签不同。但有了迁移学习,我们能够在一定程度上解决这个问题,并充分利用相近任务/领域的现有数据。迁移学习试图把处理源任务获取的知识,应用于新的目标难题,见图 2。

为什么吴恩达认为未来属于迁移学习?

图 2: 迁移学习

实践中,我们会试图把源场景尽可能多的知识,迁移到目标任务或者场景。这里的知识可以有许多种表现形式,而这取决于数据:它可以是关于物体的组成部分,以更轻易地找出反常物体;它也可以是人们表达意见的普通词语。

为什么迁移学习这么重要?

为什么吴恩达认为未来属于迁移学习?

在去年的 NIPS 2016 讲座上,吴恩达表示:“在监督学习之后,迁移学习将引领下一波机器学习技术商业化浪潮。”

雷锋网获知,当时,吴恩达在白板上画了一副草图,对他的立场进行解释。Sebastian Ruder 将其用电脑绘制了出来,便是下图:

为什么吴恩达认为未来属于迁移学习?

该图是吴恩达眼中,推动机器学习取得商业化成绩的主要驱动技术。从中可以看出,吴老师认为下一步将是迁移学习的商业应用大爆发。

有一点是毋庸置疑的:迄今为止,机器学习在业界的应用和成功,主要由监督学习推动。而这又是建立在深度学习的进步、更强大的计算设施、做了标记的大型数据集的基础上。近年来,这一波公众对人工智能技术的关注、投资收购浪潮、机器学习在日常生活中的商业应用,主要是由监督学习来引领。如果我们忽略“AI 冬天”的说法,相信吴恩达的预测,机器学习的这一波商业化浪潮应该会继续。

另外一点却不是那么清楚:为什么迁移学习已经存在数十年了,但却在业界没什么人用?更进一步,吴恩达预测的迁移学习商业应用爆发式增长,究竟是否会发生?

相比无监督学习和强化学系,迁移学习目前的曝光程度不高,但越来越多的人正把目光投向它。

对于前两者,比如说被认为是“通用 AI”(General AI)关键的无监督学习,其重要性随着 Yann LeCun 的布道以及“蛋糕论”越来越受到认可,激起又一波关注。生成对抗网络在其中扮演技术先锋角色。对于强化学习,最显著的推动力量是谷歌 DeepMind。没错,我指的是  AlphaGo。强化学习技术已经在现实场景取得成功应用,比如降低了 40% 的谷歌数据中心温控成本。为什么吴恩达认为未来属于迁移学习?

Yann LeCun 蛋糕论。在他看来,强化学习是樱桃,监督学习是糖衣,无监督学习才是糕体。但耐人寻味的是,其中并没有迁移学习。

这两个领域都前景光明。但是,在可预期的将来,它们恐怕只会产出相对有限的商业化成果——更多是学术成果,存在于尖端研究和论文中。这是因为这两个领域面临的技术挑战仍然非常严峻。

迁移学习的特别之处在哪?

当前,业界对机器学习的应用呈现二元化:

迁移学习是对付这些特殊情况的杀手锏。许多产品级的机器学习应用,需要进入标记数据稀缺的任务领域,对于这类商业应用,迁移学习无疑是必需的。今天,数据的“低树果实”基本已经被摘光,接下来,必须要把学得的东西迁移到新的任务与领域中。

相关文章:

数据不够怎么训练深度学习模型?不妨试试迁移学习

香港科技大学杨强 KDD China 技术峰会演讲:迁移学习的本质与实际应用

长按图片保存图片,分享给好友或朋友圈

为什么吴恩达认为未来属于迁移学习?

扫码查看文章

正在生成分享图...

取消
相关文章