*加特兰的 Yosemite(2T4R)芯片
雷锋网新智驾按:2019 年慕尼黑上海电子展正在进行中,在开展前夕,一场由中国汽车工程研究院和慕尼黑博览集团联合举办的“汽车技术日”率先展开讨论。加特兰(Calterah)ASIC 副总裁周文婷现场分享了“77GHz CMOS 毫米波雷达芯片从研发到量产”的故事。
雷锋网新智驾根据录音进行了分享全文整理(略有删减),其中的诸多经验对于相关行业从业者定有益处,值得一读。
以下为全文:
智能驾驶已经成为汽车工业发展之路上一个不可逆转的趋势,这些技术的发展离不开车上传感器传回的数据,传感器能够传回的数据越多,系统能够提供的信息也就更加精准、可靠。如果是一辆 L4 的自动驾驶汽车,车上至少需要配备 10 个以上的毫米波雷达,来满足其长距、中距以及短距探测的不同需求。因此,对于毫米波雷达而言,除了必要的性能以外,其低成本、小型化成为了毫米波雷达向前发展的两项重要指标。
回顾一下 77GHz 毫米波雷达发展史。
它并不是一个全新的概念,已经有 30 年以上的悠久历史,而且毫米波雷达的发展与半导体工艺的发展是密不可分的。
早在 1990 年初,当时采用的还是砷化镓(GaAs)的工艺,一颗砷化镓的毫米波雷达中,需要配备 7-8 颗以上的前端射频芯片,再配上 3-4 颗基带(Baseband)芯片,这使得其成本非常昂贵。到了 2000 年初,随着锗硅(SiGe)工艺的大力发展,大大降低了毫米波雷达芯片的成本,同时集成度也整体得到提高,一颗典型的锗硅毫米波雷达中所需要的前端射频芯片是 3-4 颗,再配上 1-2 颗基带芯片,就可以满足其基本的性能需求。这也是现在大量用在比较高端的车型中已经实现量产的 77GHz 毫米波雷达产品所采用的方案。当然,锗硅的价格和体积依然还是不能满足未来自动驾驶单车需要配备 10 颗以上毫米波雷达这样的需求。所以行业需要寻求一种更加小型化、成本更低廉的方案,CMOS 工艺使得这一切成为了可能。
首先要解释一下,为什么 CMOS 工艺在早年没有被用到 77GHz 毫米波雷达的设计当中呢?那是因为 CMOS 工艺直到最近几年才可以工作在这样一个超高的频率之中。
上图对比的是锗硅和 CMOS 这两种工艺设计中一个最基本的单元——晶体管的工作频率(Ft)。可以看到,对于同样一个设计的工艺制程节点,锗硅的工作频率是远远超过 CMOS 的工作频率的。以 180nm 工艺节点为例,锗硅是可以工作在 200GHz 以上,但对于 CMOS 而言,其 Ft 只能达到 40GHz。因此,用锗硅工艺来实现 77GHz 的毫米波雷达设计的时候更为稳定和简单的。但是随着摩尔定律不断推动 CMOS 工艺的发展,基本上每两年就有一个新的工艺节点的诞生,同时推动的也有 Ft 的不断翻番。一般一个射频电路的设计,其最大的可以跑的工作频率是 Ft 的二分之一到三分之一,因此早年的时候 CMOS 工艺只能工作在大概 10GHz 以下,基本上用在消费市场。到了 40nm 工艺节点以后,当 Ft 大于 200GHz 以上,用 CMOS 来实现 77GHz 毫米波雷达的设计才成为了可能。
CMOS 工艺带来的一个最大的好处就是成本的低廉。
下图展示的是一颗毫米波雷达的成本构成:
早年在砷化镓的毫米波雷达中,前端芯片需要 7-8 颗以上,所以其占据的成本比例是非常大的,达到 40%;到了锗硅时代,由于工艺的变化以及芯片数量的减少,整个锗硅工艺毫米波雷达的成本可以相比前代工艺下降 50%,同时射频芯片占成本的比例也从 40% 降到了 36% 左右;到了 CMOS 工艺时代,由于 CMOS 整个价格是非常低廉的,因此占成本的比例进一步下降,相比于锗硅工艺时代,整个毫米波雷达的造价又下降了 40%,而且因为 CMOS 工艺芯片的集成度是非常高的,所以一颗芯片即可代替前代工艺所需要的 3-4 颗芯片,因此其整个占成本的比例也从 36% 降到了 18%,射频芯片已经不占据主要的成本,更多的是数字芯片和后端芯片的成本,比例在 35% 以上。
除了成本以外,CMOS 工艺的另外一个好处就是具备很高的集成度,这大大降低了毫米波雷达模块的板级设计的复杂度,提升了效率,节省了团队的开发时间成本。也因为集成度高,让毫米波雷达的小型化设计成为可能。综上,CMOS 工艺如今不但可以用于 77GHz 毫米波雷达芯片的设计,而且也符合毫米波雷达低成本、小型化的发展需求。
下面简单介绍一下加特兰(Calterah)这家公司,首先这是一家初创公司,成立于 2015 年,是一家无晶圆半导体设计公司,主要创始成员都毕业于美国的知名高校,并在硅谷有多年的半导体设计经历,是很早就使用 CMOS 工艺来设计毫米波电路的企业。公司主要从事毫米波电路的设计和研发,致力于为全球客户提供更低功耗、更低成本以及更高集成度的毫米波雷达解决方案。
从 2015 年成立到 2017 年 10 月,经过两年多的时间,加特兰发布了全球首颗 77GHz CMOS 毫米波雷达芯片 Yosemite,这是一颗毫米波雷达的收发芯片,对比一个 1 元硬币,其体积是非常小的。
这颗芯片采用了 40nm 的 CMOS 工艺制程,使用了先进的可分装技术,分装的好处是在射频端的损耗可以降到最低,极大提升了射频的性能。这颗芯片的集成度也是很高的,加特兰在芯片当中集成了 2 个发射通道以及 4 个接收通道,还有一个 PLL(FMCW 波形产生器),再加上一个基带增益部分,这样一颗单芯片集成了前代锗硅工艺的几个套片所能达到的所有功能。
除了高集成度之外,Yosemite 芯片的性能表现也是不错的。在 TX 部分,其最大的输出功率可以达到 12dBm,在 RX 部分,通过可调增益,可以输出 40dB 到 70dB 的可调增益,所以 RX 的噪音系数也只有 12dB。
此外,加特兰的研发团队在芯片片上也集成了很多的单元功能模块,比如片上的温度传感器(T Sensor)、TX 端的输出功率监测等等。在 RX 端,还做了 BIST(Build-in Self Test)的电路,对上层系统来说,可以更好的满足其对于功能安全的需求。
加特兰 Yosemite 毫米波雷达芯片还有一个重要的特性就是其低功耗。在设计之初,研发人员从架构到板式布局到每个模块的优化都做了大量的优化处理,来保证芯片的功耗是非常低的。
举个例子,这款芯片的整个电路都工作在一个非常低的电源电压下(1.1 伏),包含了前端的射频电路等等。其次,在整个毫米波传输的设计中,考虑到了其射频损耗,加特兰在片上采用了 CBW 传输线的结构,在整个布局上尽量减少传输线的长度(控制在 1mm 以内),这样就能尽量减少毫米波的传输所带来的不必要的性能损耗。另外,在一开始设计芯片架构的时候就采用了降低传输匹配的设计,大大减少了不必要的功耗。
通过以上的低功耗的设计,Yosemite 芯片的功耗是非常低的,所有的模块全部开启 100% 运行的情况下总功耗在 0.65W,远远小于同级别的其他产品。低功耗带来的一个很大优势就是令结点温度(junction temperature)比较低,这也为毫米波雷达的上层系统的散热设计带来好处。在实际测试中,Yosemite 芯片在室温 25 摄氏度情况下,全模块开启工作时其温度在 56 摄氏度左右。
从 2017 年 10 月发布第一款毫米波雷达芯片产品 Yosemite 开始,加特兰此后陆续量产了这款芯片的系列产品。第一个就是 CAL77A2T4R 这款产品,它包含了 2 个发射通道、4 个接收通道,非常低功耗,适用于短距和中距的传输;同时,加特兰也陆续量产了 CAL77A4T8R 这款产品,可提供 4 个发射通道、8 个接收通道,同样低功耗,适用于中长距车载毫米波雷达的应用。
因为这两款产品都是车载毫米波雷达芯片产品,所以非常关注是否能够满足 AEC-Q100 的认证。从 2017 年开始,加特兰就与上海一家非常知名的第三方实验室进行合作,陆续开始前两款产品的 AEC-Q100 可靠性认证。通过一年多的合作测试,到 2018 年 10 月,加特兰前期的两款产品都完成 AEC-Q100 Grade2 的可靠性认证。
当然,过可靠性认证只是敲门砖而已,如何在量产过程中保证芯片的质量是加特兰所面临的巨大挑战。为了应对这些挑战,加特兰首先选择了全球最大的芯片代工厂(其实就是台积电)进行芯片的制造;在分装部分,加特兰选择和新加坡的分装厂进行紧密的合作,在一些关键的参数上进行定制化的调整;另外,加特兰在芯片的量产测试上花了很大力气,从 2016 年就开始寻找供应商准备 77GHz 毫米波雷达芯片的量产平台,到 2017 年底才完成稳定量产平台的开发。因为 77GHz 是一个非常敏感的频率,任何环境的变化都会影响芯片的性能。到 2018 年,芯片量产正式开启,这一年,加特兰量产出货了超过 10 万颗毫米波雷达芯片。
虽然 10 万颗对于大厂来说并不是一个很大的数目,但这对 CMOS 工艺的毫米波设计来说绝对是向前迈进的一大步。
以上的成绩并不会让加特兰感到满足,实际上从 2017 年底开始,这家公司就在进行下一代产品的开发,这代产品融合了前端射频芯片、基带放大、DAC、数字 CPU 以及基带算法,还有不同的接口模块。
这款被命名为 ALPS 的全新一代 CMOS 毫米波雷达芯片即将于 3 月 21 日问世。