科学计算可视化(Scientific Visualization,SciVis)是计算机图形学的一个重要研究方向,是图形科学的新领域。随着计算能力的不断增强,科学数据中使用的物理模型以及模拟空间的大小都在不断提高。本书尝试性地将机器学习理论应用于科学计算可视化中,大大提高了数据中特征识别的鲁棒性和准确率,同时结合流场数据可视化技术的具体实现,详细阐述这两个领域结合的理论和存在的关键问题。本书内容主要包括:科学计算可视化的内容、技术现状和挑战,机器学习基本理论,使用 Boosting 和 CAVIAR 两种方法进行科学计算可视化的理论和方法等。本书可作为高等学校计算机或非计算机专业研究生科学计算可视化课程的参考书,也可作为从事流场数值模拟和流场可视化技术的研究或开发人员的参考书。
张丽,博士,齐鲁工业大学信息学院,2009年9月—2010年2月,美国密西西比州立大学航空航天系访问学者,2010年3月—2011年8月,美国俄亥俄州立大学计算机科学与工程学院访问学者。2014年至今,主要讲授面向对象程序设计、数据库系统等课程。
本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。如需删除,请联系 kefu@yanxishe.com
AI 研习社已经和阿里大文娱、旷视、搜狗搜索、小米等知名公司达成联系,帮助大家更好地求职找工作,一键投递简历至 HR 后台,准备了一些内推渠道群。
欢迎大家添加研习社小学妹微信(aiyanxishe),小学妹拉你加入(备注求职)。
雷锋网雷锋网雷锋网
相关文章:
资料 | Python机器学习及实践-从零开始通往Kaggle竞赛之路