资讯 人工智能
此为临时链接,仅用于文章预览,将在时失效

DeepMind提出SCAN:仅需五对样本,学会新的视觉概念!

作者:汪思颖 编辑:杨晓凡
2017/07/14 10:06

雷锋网 AI科技评论按:DeepMind实验室发布名为符号-概念联合网络(Symbol-Concept Association Network,SCAN)的新型神经网络模型,可以让计算机模仿人类视觉和词汇获取的方法,通过重组学到的概念,来想象新的概念。

以下为雷锋网 AI科技评论根据DeepMind实验室发布内容编译。

大约二千五百年前,一个美索不达米亚商人收集了一些粘土、木材和芦苇,随着时间的推移,通过这些材料,他们发明了算盘,能够在商品交易过程中记录货物数量、理清资产,这带动了经济的蓬勃发展,也改变了人类社会。

那一刻的灵感也照亮了人类另一个惊人的能力:重组现有的概念,想象出全新的东西。不具名的的发明家思考他们想要解决的问题,建造奇妙的装置,收集原材料来创造新的东西。粘土能塑造成算盘的框架,棍子能用来把算珠串起来,芦苇可以编成算珠。算盘的每个组成部分都很常见,也各有区别,把他们用这种新的方式组合在一起,就出现了革命性的创造。

组合的思想是诸如创造力、想象力和语言表达等能力的核心。脑海中只要有少量熟悉的概念性模块,我们就能创造出大量新东西。我们将概念从具体到一般进行归类,形成不同层次,然后用新的方式重组层次里的不同部分。这种方式对我们来说很自然,但要将其应用于AI研究还是个挑战。

在DeepMind的新论文中,提出了一种新的理论性方法来解决这个问题。此外,他们还展示了一种称为符号-概念联合网络(Symbol-Concept Association Network,SCAN)的新型神经网络模型,这是首次通过模仿人类视觉和词汇获取的方法,学习自下而上的视觉概念层次,从而能够通过语言指令想象出全新的概念。

他们的方法可以总结为以下几点:

DeepMind提出SCAN:仅需五对样本,学会新的视觉概念!

图:SCAN模型依据物体的个体区分、颜色和旋转、墙壁颜色、地板颜色等可表述的视觉特征等来学习,去表示视觉场景。

DeepMind提出SCAN:仅需五对样本,学会新的视觉概念!

图:首先,SCAN模型通过语言指令连接概念层次——从“蓝色房间、红色地板、白色行李箱”这种具体的概念,到“行李箱”这种普遍的概念,再回到“黄色房间、粉红色地板、绿色行李箱“这种具体的概念。在每一步SCAN系统都会被要求想象出相应的概念(如图右所示)。最后,向它指示一个新的概念——“woog”。虽然从没看到过“woog”的例子,SCAN系统能成功地想象出它们看起来是什么样的(黄色房间、粉红色地板、绿色物体)。

DeepMind提出SCAN:仅需五对样本,学会新的视觉概念!

图:图中左边是SCAN模型设想的“白色行李箱”的图像,右边是SCAN模型从“粉色房间、橙色地板、青色帽子”这张图像上产生的概念。

通过符号指示,来重组现有的概念,学习新概念,这赋予了人类惊人的能力,使其能够解释诸如宇宙、人文主义或美索不达米亚经济案例中的抽象概念。在成功实现这些概念性的飞跃之前,算法还有很长的路要走。他们的这项研究朝着算法的飞跃前进了第一步,即让算法在很大程度通过无监督的方式学习,就像人类一样思考,进行概念抽取。

via DeepMind Research Blog

雷锋网 AI科技评论编译。

长按图片保存图片,分享给好友或朋友圈

DeepMind提出SCAN:仅需五对样本,学会新的视觉概念!

扫码查看文章

正在生成分享图...

取消
相关文章