资讯 人工智能
此为临时链接,仅用于文章预览,将在时失效

360副总裁颜水成教授:深度学习的研发目标及1×1卷积的功能 | CCF-GAIR 2017

作者:汪思颖
2017/07/08 08:11

360副总裁颜水成教授:深度学习的研发目标及1×1卷积的功能 | CCF-GAIR 2017

7 月 7 日,由中国计算机学会(CCF)主办,雷锋网与香港中文大学(深圳)承办的CCF-GAIR 2017全球人工智能与机器人峰会在深圳大中华喜来登酒店如期开幕。奇虎360副总裁、首席科学家、IEEE Fellow、IAPR Fellow颜水成教授带来了主题为《深度学习:精度极限VS用户体验》的演讲。这是大会首日最后一场演讲。

深度学习研发的两种不同目标:

总的来说第一个目标的特点是必须”用脑”,而第二个目标更多的是”用心”。

两种目标相互促进的实例:

在2016年,大家都觉得分类和检测已经可以在工业界中很好地使用,但是从来没有人觉得物体分割已经到了可以使用的阶段。我的研究组就做了很多人体分割的工作,给出一个图象,输出每个像素具体是什么东西,我们花了两年的时间把它的性能从44%提升到了86%。同时领域内有很多分割算法取得了很好的成果,去年年底工业界开始思考,确实有很多的应用场景可以受益于这种分割的技术,于是很多人开始思考怎么样去对模型进行加速,保证在一些限定的场景的性能能满足产品化的需求。

从今年开始,比如说美图秀秀和Snapchat可以把人的头发和脸分割出来,可以产生很好的头发美化的效果,360和其他一些公司则提供人体分割的技术,可以把人实时从自拍的视频里面分割出来,叠加到动态的场景,产生很多好玩、好看的效果。这是一个典型的因为追求精度极限达到一定程度时,就激发了新的产品形态的创新。

1×1卷积概念

纯粹的内积不能很好地模拟人的神经元的复杂工作方式,卷积可以用更复杂的网络结构来替代,当这种复杂的结构是多层感知机的时候,对应的后面操作就是1×1卷积,这个1×1卷积跟前面的3×3、5×5卷积叠加在一起,就会产生更复杂的抽象过程。基于1×1卷积的模型的参数可以降到很低,这样就为我们把深度学习往端上迁移提供了一个可能性。

1×1卷积功能

基于1x1  卷积的张量逼近分析可以很好地解释当前各种流行网络,GoogleNet、ResNet,  ResNext里面微观结构的理论依据。

基于1x1卷积的分析可以将ResNet解释成Deeply Connected Network的一个特列,同时启发了我们提出的一个新网络,Dual-path Network。这个网络在ImageNet取得了单模型的最好性能。

通过对每一个卷积操作附加一个1x1卷积操作然后再点乘,虽然模型变复杂了,但可以大幅减少前向传播的计算量。

详细内容请关注雷锋网后续报告。雷锋网原创。

长按图片保存图片,分享给好友或朋友圈

360副总裁颜水成教授:深度学习的研发目标及1×1卷积的功能 | CCF-GAIR 2017

扫码查看文章

正在生成分享图...

取消
相关文章