资讯 人工智能
此为临时链接,仅用于文章预览,将在时失效

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

作者:AI研习社
2020/09/08 17:35
计算机视觉可以分为两大方向:基于学习的方法和基于几何的方法。其中基于学习的方法最火的就是深度学习,而基于几何方法最火的就是视觉SLAM。相较于激光SLAM,视觉SLAM可研究空间较大,是当前研究热点之一。


本次视觉SLAM比赛由AI研习社和INDEMIND联合举办,数据集使用双目视觉惯性模组采集。本数据集分为两个部分。easy和mid,分别代表简单和中等难度,适应不同的同学进行实践。

了解更多关于比赛难点、建议,可以扫码或点击右侧链接观看 赛前动员公开课 

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

提供rosbag数据和ground truth

其中rosbag可用话题为三个:

  • /cam0/image_raw 左⽬相机 频率 25hz

  • /cam1/image_raw 右⽬相机 频率 25hz

  • /imu0 imu信息,频率 200hz


新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

使用Tum的数据集格式,⼀共8列,分别为pose(x,y,z)q(x,y,z, w)


新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

ATE:Absolute Trajectory Error 绝对轨迹误差(如EVO⼯具中ape算法)

绝对轨迹误差是估计位姿和真实位姿的直接差值,可以⾮常直观地反应算法精度和轨迹全局⼀致性。


新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛


新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

扫描下方二维码或 点击链接 即可报名

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

雷锋网雷锋网雷锋网

长按图片保存图片,分享给好友或朋友圈

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

扫码查看文章

正在生成分享图...

取消
相关文章