资讯 人工智能学术
此为临时链接,仅用于文章预览,将在时失效

从泊松方程的解法,聊到泊松图像融合

作者:汪思颖
2019/06/17 15:11

雷锋网 AI 科技评论按,本文作者成指导,字节跳动算法工程师,本文首发于知乎,雷锋网 AI 科技评论获其授权转载,正文内容如下:

2004 年 SIGGRAPH 上,Microsoft Research UK 有篇经典的图像融合文章《Poisson Image Editing》。先看看其惊人的融合结果(非论文配图,本人实验结果):

从泊松方程的解法,聊到泊松图像融合

这篇文章的实现,无关目前算法领域大火的神经网络,而是基于泊松方程推导得出。

泊松方程是什么?

很多朋友比较熟悉概率论里面的泊松分布。泊松方程,也是同一个数学家泊松发明的。但却和泊松分布没有什么关系,是泊松物理学领域提出的一个偏微分方程。

从泊松方程的解法,聊到泊松图像融合

这里从泊松方程的解法,聊到泊松图像融合表示的是拉普拉斯算子,从泊松方程的解法,聊到泊松图像融合从泊松方程的解法,聊到泊松图像融合 (从泊松方程的解法,聊到泊松图像融合在泊松方程中是已知量)可以是实数或复数值方程,特殊情况当从泊松方程的解法,聊到泊松图像融合时被称为拉普拉斯方程。当处于欧几里得空间时,拉普拉斯算子通常表示为从泊松方程的解法,聊到泊松图像融合

学习图像处理的朋友对于从泊松方程的解法,聊到泊松图像融合从泊松方程的解法,聊到泊松图像融合比较熟悉,分别表示二阶微分(直角坐标系下的散度)、一阶微分(直角坐标系下的梯度)。

微分与卷积

连续空间中的微分计算,就是大学里微积分那一套公式。但是在计算机的世界里,数据都是在离散空间中进行表示,对于图像而言,基本的计算单元就是像素点。让我们从最简单的情形,一维数组的微分说起:

 从泊松方程的解法,聊到泊松图像融合表示位置 x 一阶微分计算(一阶中心导):

 从泊松方程的解法,聊到泊松图像融合

从泊松方程的解法,聊到泊松图像融合表示位置 x 二阶微分计算(二阶中心导): 

从泊松方程的解法,聊到泊松图像融合

随着从泊松方程的解法,聊到泊松图像融合,上面的微分算式的结果会逐渐逼近真实的微分值。对于图像而言,这里 h 最小可分割单元是像素,也就表示像素间的间距,可视为 1。再看看,二阶微分的公式,是不是可以看成从泊松方程的解法,聊到泊松图像融合的卷积核从泊松方程的解法,聊到泊松图像融合在一维数组上进行卷积计算的结果(卷积中心在 x 上)。

至此,不难理解,离散数据(例如图像)上的微分操作完全可以转换为卷积操作。

当数组维度更高,变成二维数组呢?也就是处理图像的拉普拉斯算子: 

从泊松方程的解法,聊到泊松图像融合

此时,卷积核尺寸应该是从泊松方程的解法,聊到泊松图像融合,具体数值为从泊松方程的解法,聊到泊松图像融合,称为拉普拉斯卷积核。

记住拉普拉斯卷积核,我们后面会用到。

泊松方程求解

这个时候,想想我们学会了什么?泊松方程的形式,以及拉普拉斯卷积核。

再想想,在图像场景下,什么是泊松方程的核心问题?

已知图像点二阶微分值(直角坐标系下即散度 div)的情况下,求解各个图像点的像素值。

一个简单的例子,假设有一张 从泊松方程的解法,聊到泊松图像融合 的图像从泊松方程的解法,聊到泊松图像融合从泊松方程的解法,聊到泊松图像融合表示各个位置上的图像像素值,共 16 个未知参数需要被求解。

应用拉普拉斯卷积核后,得到 4 个方程式:

从泊松方程的解法,聊到泊松图像融合

4 个方程式求解出 16 个未知参数?这是不可能的。

因此,我们需要另加入至少 12 个更多的方程式,也就是说,需要把剩余 12 个边界点的值确定,即需要确定边界条件。边界一般符合 2 种常见的边界条件:

但给定边界条件之后,就可以有 16 个方程式组成的方程组了,矩阵化表示此方程组之后,得到形式为 从泊松方程的解法,聊到泊松图像融合 。

看到从泊松方程的解法,聊到泊松图像融合,大家就应该放松了,不就是解方程嘛,用雅可比迭代法或者高斯赛德尔迭代法来求解就 OK 了。

Poisson Image Editing

背景知识储备好了后,让我们把目光拉回到论文《Poisson Image Editing》上。

在图像融合任务中,前景放置在背景上时,需要保证两点:

重点关注两个词:内容平滑、边界一致。平滑是什么?可以理解成图像前景、背景梯度相同。边界一致是指什么?可以理解成在边界上像素值相同。再用一张图来说明:

从泊松方程的解法,聊到泊松图像融合

上图中 u 表示需要被合成的前景图片,V 是 u 的梯度场。S 是背景图片, 从泊松方程的解法,聊到泊松图像融合 是合并后目标图像中被前景所覆盖的区域,则从泊松方程的解法,聊到泊松图像融合从泊松方程的解法,聊到泊松图像融合的边界。设合并后图像在 从泊松方程的解法,聊到泊松图像融合内的像素表示函数是 f,在从泊松方程的解法,聊到泊松图像融合 外的像素值表示函数是 从泊松方程的解法,聊到泊松图像融合

此时,平滑可表示为: 从泊松方程的解法,聊到泊松图像融合;保持边界一致可表示为:从泊松方程的解法,聊到泊松图像融合

这里如果接触过泛函的朋友会比较开心,没接触过的朋友可以先看看欧拉-拉格朗日方程。

从泊松方程的解法,聊到泊松图像融合

代入欧拉-拉格朗日方程后则有: 

从泊松方程的解法,聊到泊松图像融合


注意:F 是 从泊松方程的解法,聊到泊松图像融合f 的函数,不是对 f 的,因此 从泊松方程的解法,聊到泊松图像融合

从泊松方程的解法,聊到泊松图像融合


怎么样,看起来是不是一个泊松方程呢?当然,还差两步:

现在很轻松了,边界条件已知、散度已知,在离散空间中求解泊松方程中的 f,参考上一节的求解过程即可。

代码实现

函数代码已经收录在了 OpenCV 的官方函数 seamlessClone 里:github source code

使用的时候,需要三张图片:前景图、背景图、mask 图(指明前景图中需要融合的区域,最简单的就是直接等于前景图大小的 mask,待融合区域是白色,其余位置黑色)。

下面我们使用 OpenCV 的 Python 接口来动手试试,用到以下两张图以及一段代码:

从泊松方程的解法,聊到泊松图像融合

foreground.jpg

从泊松方程的解法,聊到泊松图像融合

background.jpg

import cv2

import numpy as np

# Read images : src image will be cloned into dst

dst = cv2.imread("background.jpg")

obj= cv2.imread("foreground.jpg")

# Create an all white mask

mask = 255 * np.ones(obj.shape, obj.dtype)

# The location of the center of the src in the dst

width, height, channels = im.shape

center = (height/2, width/2)

# Seamlessly clone src into dst and put the results in output

normal_clone = cv2.seamlessClone(obj, dst, mask, center, cv2.NORMAL_CLONE)

mixed_clone = cv2.seamlessClone(obj, dst, mask, center, cv2.MIXED_CLONE)

# Write results

cv2.imwrite("images/opencv-normal-clone-example.jpg", normal_clone)

cv2.imwrite("images/opencv-mixed-clone-example.jpg", mixed_clone)

最终效果如下:

从泊松方程的解法,聊到泊松图像融合

长按图片保存图片,分享给好友或朋友圈

从泊松方程的解法,聊到泊松图像融合

扫码查看文章

正在生成分享图...

取消
相关文章